yonder

R&D Metrics,
Reloaded

Portfolio Managers Focus Group
2025 May, Manoir St Sauveur Qc

— agenda

Introduction

What s technical risk and technical debt

Measuring

How is software quality measured

Impact

How do we calculate the impact?

yonder

— Remus Pereni

CTO / Software Architect
Technical University of Cluj Napoca
BS, Computer Science

1996 - Nethrom (Yonder)

2000 - Startup

2005 - Yonder / SD, PM, DM, Architect
2017 - CTO

2016 start of the Technology DDs

200+ Technology DD Reports

1SS Blue, TSS Public, Vela, Harris, Perseus, CSl,
Strikwerda Investments, Jonas, Volaris

The impact of code and technical debt

yonder

1 Introduction

®logoipsum yonder

— Technical Risk

The potential for losses due to
failures or shortcomings in
technology systems, processes, or
implementations that can impact

project outcomes or business
objectives.

Is that different from Technical
Debt?

TECHNICAL RISK

— Technical Deb TECHNICAL DEBT

The accumulated costs and future liabilities
resulting from shortcuts or suboptimal
technical decisions made during the
software development process. It represents
the work that needs to be done before a
piece of software can be considered
complete or optimal.

Code debt
Architectural debt
Technology debt
Testing debt
Infrastructural debt
Know-how debt

Testing

Infrastructural
Debt

Know-How Debt Know-How D

— Technical Debt Quadrants

DELIBERATE
“We don’t have time for “We must ship now and deal
design” with the consequences”
RECKLESS PRUDENT

“ Now we know how we
should have done it”

ACCIDENTAL
yonder

Does your portfolio have a technical debt
problem?

yonder

®

— Do we see a tech debt problem?

Technical Debt

Roadmap

Processes

Technology

Appropriateness

Reliability

Architecture

equirements

Maintainability

Security

Compatibility

Portability

Avg of 144 products
seen in the past years
on M&A

yonder

— Technical Debt Quadrants

IN CODE Debt Risks

New features

Improvements

Dependency upgrades

Rework / refactoring

Feature removal

Enhancement Performance optimization

Bug fixes

Scaling

Reliability

Documentation

CUSTOMER-FACING

Customer escalations

Operation

Incident response

Feature flag & runtime variable

On-call

Tool chain investments

Required migrations

Testing & QA

Security & compliance

Chaos engineering

HA/DR investments

Pen testing & vuln scans

IN PRODUCTION

Is there focus the risk mitigation? Which items?

Risk
management

BEHIND THE SCENES

Maintenance

yonder

— Technical Debt Quadrants

Enhancement

CUSTOMER-FACING

Operation

IN CODE Debt Risks

R 4
~
\

Dependency upgrades

New features LS
&
Improvements

7
7 \
Feature removal / \

Performance optimization

Rework / refactoring

Tool chain investments

Bug fures >
Reliability 4 - ‘ Required migrations
Documentation

Testing & QA

Customer escalations

Security & compliance

BICIINIE response
Chaos engineering

Feature flag & runtime variable HA/DR investments

On-call Pen testing & vuln scans

IN PRODUCTION

Risk
management

BEHIND THE SCENES

Maintenance

yonder

What is your process to manage technical debt
in your portfolio?

yonder

— Who measures technical debt?

W
10%

none of the interviewed companies had a clear
strategy on how to track and address the
wasted time

Only 10% of business Developers waste 42%
managers actively of the work week on
manage technical debt. technical debt.

Besker, T., Martini, A., Bosch, J. (2019) “Software Developer Productivity Loss Due to Technical Debt”

Antonio Martini, Terese Besker, and Jan Bosch. 2018. Technical debt tracking: Current state of practice: A survey and
multiple case study in 15 large organizations. Science of Computer Programming 163 (2018), 42-61.

yonder

— TSS Security Control Framework a.k.a. TSS SCF

In TSS the TSS SCF was introduced in 2022 and
covers areas that are related to security:

; ‘% - —r— - penetration tests,
i TSS Security Control Framework. - i ! ° data encry ptl on

T Duyoa e roryour cuswormers

B e e * security requirements (OWASP ASVS)
e —— - unsupported software

| | Impact is high, companies see vulnerable or
e unsupported third-party dependencies as
e . uncompliant and leads to pressure to change

e —— including in M&A.

fuland |
53 6.2 Areactions of priviledged users logged?
s

Until now MD had to sign that he acknowledges
T R the risks, and fines can be applied for not
addressing the issues.

8.0 Sa Awar 55 B
62 81 Doyou perform phishingtests for your employees periodically (minimal annually)?
82 he i for

®logoipsum yonder

) Measuring

®logoipsum yonder

INTERNATIONAL ISO/IEC
STANDARD 25010

Second edition
20231

Systems and software engineering —
Systems and software Quality
Requirements and Evaluation
(SQuaRE) — Product quality model

number
2023(E)

© ISO/IEC 2023

St

— Measuring software quality

"W software
Improvement
Group

SIG/TUVIT EVALUATION CRITERIA
TRUSTED PRODUCT MAINTAINABILITY:

GUIDANCE FOR PRODUCERS
Version 16.0 (June 10, 2024)

INTERNATIONAL ISO/IEC
STANDARD 5055

First edition
2021-03

Information technology — Software
measurement — Software quality
measurement — Automated source
code quality measures

Reference number

I?o I EC 1S0/1EC 5055:2021(E)
S ———{)

© ISO/IEC 2021

https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.softwareimprovementgroup.com/wp-content/uploads/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.iso.org/standard/80623.html
https://www.iso.org/standard/78176.html

— 1SO / IEC 25010:2011 Product Quality Model

Overall Rating:

—e—Your App —e—Max Possible

FunCtlonallty ey ety

omp leteness n Maturity Time behavior =4 Recogniz ability =1 Modularity =] Confidentiality Co-existence Adaptability
4 C lef ime behavi iz abil i dul ficl | d bil
3 Correctness =1 Availability Sgl‘tﬁ::ggi | Learnability =| Reusability - Integrity Interoperabilit: Installability
Portability Reliability
Approg;iatene = Fault Tolerance| Capacity ={ Emor handling ={ Analyzability] rept‘gig:(ion Replaceability
L1 Recoverabiity = U-‘:é';t:{if;ce H Modifiability - Authenticity
| Accessibility =1 Testability =4 Accountability
=] Operability

Compatibility Maintainability

Security

yonder

— R&D Metrics

L 0N OV B W R

" Formula Bar ~

A B Cc E F
Classification: Confidential Filled in by:
Reference date:
Product name:
Product version Risk Score 3532
Technology | .Net
Total lines of code | 154208
R&D Metrics Survey
Question Answer Comments
10 Code debt Code Risk Score 232
1.1 Percentage of duplicated lines of code from the code base 4,5%
Total duplication risk: 0
1.2 Percentage of code in methods/functions/procedures with more than 15 lines of code 44,0%
1.3 Percentage of code in methods/functions/procedures with more than 30 lines of code 258%
1.4 Percentage of code in methods/functions/procedures with more than 60 lines of code 12,6%
Unit size risk score: 32
1.5 Percentage of code in methods/functions/procedures with cyclomatic complexity higher than 5 30,1%
1.6 Percentage of code in methods/functions/procedures with cyclomatic complexity higher than 10 18,7%
1.7 Percentage of code in methods/functions/procedures with cyclomatic complexity higher than 25 71%
Total complexity risk: 122
1.8 Percentage of code in methods/functions/procedures with more than 3 argumets 17,2%
1.9 Percentage of code in methods/functions/procedures with more than 5 argumets 6,7%
1.10 Percentage of code in methods/functions/procedures with more than 7 argumets 35%
Total method interfacing risk: 78
2.0 Technology debt | Technology Risk Score 3300
2.1 Number of dependencies that are unsuported A 22
2.2 Number of dependencies that have security vulnerabilities 11
2.2 Number of di | that have liant license 0
3.0 Testing quality
3.1 Number of lines of code changed in the last released version A 35287| This includes our entire project (.Net and JIS]
3.2 Number of bugs that have been reported and accepted as software bugs for the last release 0
3.3 Number of tickets that have been raised for the last release 0
Testing quality risk score 0
Testing Risk Score 0

Code Debt

T N
Duplication
+ % of duplicated lines of code from the
codebase should not exceed 4.8%
\. J
e N

% of code in methods /
functions / procedures with
morethan 15/ 30/ 60 lines of
code

% of codein methods /
functions / procedures with
cyclomatic complexity higher
than 5/ 10/ 25

% of codein methods /
functions / procedures with
morethan 3/5/ 7 arguments

Technology
Debt

|| Number of dependencies that

are unsupported

Number of dependencies that
have security vulnerabilities

| | Number of dependencies that

have uncompliant license

Testing Quality

Number of lines of code
changed in the lastreleased
version

Number of bugs that have
been reported and accepted
as software bugs for the last

release

Number of tickets that have
been raised for the last
release

yonder

How code debt looks like?

alaeins CRhVorgHel CVgrgRoh JpprWa CVorga HELPE SVPO
2Bel He'l R ST
waﬁ ageBe ey nas e) L

. -
| Global's = g L £/ ﬁ' per "— .ﬂ . - l T

|_J b]
DHIPR® SVPOS. CRWAb. SVWAR CEMA CRWJ
s y o
P REoE oA R0 rBloch E . IN@ amMa) r
. .-' T =
- e l ..‘ k sk

-

EiVol SVi_ ATA T
r“q‘an VERNein! = 3’
o

i-tl’ gamt

s

shmmame mim e B O P S O IO T T

Red: more than 25 decisions / method
Yellow: more than 10 decision / method

Green: more than 5 decision / method

yonder

— Looking at a long running project

120.000

100.000

80.000

60.000

Lines of code

40.000

20.000

—e— Lines of code
—e—Code Risk

01.01.2015
12.777
108

Codebase evolution in time

01/13/2017
42.040
130

01.07.2019
53.996
161

01/14/2021
67.666
161

01.01.2024
100.648
168

180

160

140

120

100

80

60

40

20

Code Risk Score

yonder

isam3d-domain-commons

CaseSer
viceImp

web-api-app
isam3d.ap |isam3d.app
p.zaak .dataimpor

BaseRe
source

] [{

isam3d-domain-commons |[BaseResourc isam3d-services-csam
Address Authora isam3d.csam.boundary.mks.sources
equals/(O tive
Citize BaseU ObjectFa
n ser ctory.
Actio
n
Case
Specific
atieType
CaseC
lient Voorzien
ing
isam3d-services-case isam3d-services- isam3d-services- isam3d-
signal vto services-eds

isam3d”case .re [CaseClientReso

sources.plan urce

ProgressReportRe
source

ource

PlanRe
source

CaseRes

isam3d.cases.boundary.event

NotificationEventList
ener

isam3d.signal.resource
s

isam3d.vto.control |Jisam3d.eds.bo

VTOConverte VTOServi jundary.corvmk

‘II I

isam3d-services-config

isam3d.config.resources

UserRolesReso

SecurityResou Manage
rce mentIn
fo

UserRe
urce source

Authentication
Service

SignalResource VTOResou [ceImpl S
rce RawEv
ent
Notificatio
nResource
isam3d-services [isam3d-services
-diagnose —event-impl
ATCLITIAAEL) isam3d.diagnose.
nResource
resources
DiagnoseR
isam3d-core- esource
authentication
isam3d.authentication. |+Sam3d- isam3d- isam3d.mu
websso.control services- ServiEes— ltitenant
TSDoResou gba
rce
JKSKey.
Servic
e

isam3d.ma |jweb-api-
il.contro app

1
isam3d.eve
nts.entity

T

el] [
L - |]
isam3d-services- isam3d- isamBq— isadef
case services- services- services-— |
CaseResour config actionactionc|gba |

CaseCo
nverto |
r

o

isam3d.conf
ig.resource
s

onverte]

isam3d.co
nfig~dt
ig A o

isam3d-

isam3d-services-vto

services-
Yy
i’sam3d*’partn
er.resources

VTORe
sourc

at

isam3d.i

f.contro I

Code debt - why is it important

Codebase evolution in time

120.000
100.000

80.000

@
go
o
(&)
"5 60.000
[7p]
[<b]
c
=

40.000 -

20.000

01.01.2015 01/13/2017 01.07.2019 01/14/2021 01.01.2024

—e— Lines of code 12.777 42.040 53.996 67.666 100.648
—e—]arch. Maint. 83 80 79 78 78

84

83

82

81

80

79

Maintenability

78
77
76

75

yonder

24 products measured

2 portfolios

None had zero risk

— R&D Metrics

12.900 NG
8.920 NG
4.533 NG
3.532 I
3.415 [INNEGEGE

2.400 N

2.380

Product Risk Score

14.000

12.000

10.000

8.000

6.000

4.000

1.599 N
1.310 N
1.219 1R
1.124 IR
1.097 R

977 IR
974 IR
gos R
845 IR
794 IR
600

596 |}

393
351§
108 |

87 |

2.000

-

[(J]

O

c

o

Product 24 >~
Product 03
Product 17
Product 08
Product 21
Product 12
Product 15
Product 05
Product 20
Product 02
Product 09
Product 11
Product 04
Product 07
Product 18
Product 01
Product 13
Product 22
Product 06
Product 14
Product 10
Product 16

Product 19

— R&D Metrics

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

L8

6T 19NPoid

80T

9T 3onpo.d

€ET

8T¢

0T 319Npo.d

00¢

€6T

T 30npoid

00€

962

90 1PNpo.d

Risk Type Distribution

o (=] = = o
(=] @
(¥} ©
()]
o [0e)
=) wu o
o [=] [=]
3 °H
[#)]
S 8
= (o] w]
0 5) = o (]
o 5 wn o w o0 5
o i) o o o o o i)
= = = = = = = =
(e} o (o] o (o] o o o
(a8 jal a (a8 ja) jal ja jal
c c c c c c c c
0 0 0 0 0 0 0 0
+ + [(s + + + +
N = o — o o — o
N w - oo ~ I = o

m Code Risk mTech Debt Risk

24 products measured
2 portfolios
2 had zero code risk

None had zero risk

()] w (=] (=] = (=] (=]
= o W
w
3
< 0
1r39/° 10%
w

. ¥ 4 A B HE

I [=] N e w [=])

g = g S M E
~J — 18] [
o L 19)] = (=] o
(s} [(s} o (5, [,¥] o (=] o
o o o o o o o o o 0
= = = = = = = = = =
o o o o (@] o o o (@] o
jal jul a jal a jal a a a jal
c c c c c c c c c c
0 0 0 (9] (@] 0 0 0 0 (9]
+ —+ + —+ —~+ + + —+ + + 0
o N o = = N o = o N
S 8 8 n s Ng T e R 8834%
m Test Risk

m Code Risk mTech Risk = Test Risk

yonder

— R&D Metrics Cyclomatic complexity, high
number of decisions, the
biggest problem.

Code Risk Distribution/Product

100%
~J +a - = w (] = - $a (=] w = ~J
(=41 (¥3) w g (=21 =S w - o0 w co
90%
80% S
w —- u @
co
70% w o g o
o
600/0 e
o]
= . "
50% N &3 Code Risk Composition
({a]
(2,1
40%) w e Q 11,63%
w ~ & 22,18%
30% o
= =)
wu %)
0,
20% o o ®
“
0 =
10% N w w 25,12%
0% = = = = =
0 v 0 0 v O 0 0 v 0 0 v O 0 0 0 0 v v 0 0 0
b 1 1 = 3 =] =] | o 1 o b 3 =] =] | b 1 = 3 o 1 =} | =]
© © O O © © © © 0 0 0 0 O 0 o o o O o o o o
a a a a a a a a a a a a a a a O a a a a O O
| o=y | oy [[| oy | oy [| o=y | oy = | | oy | oy [| o=y = [[oy | oy [[-
(@] (@] (e 0 (@] 0 0O (@] (@] 0 0 (@] 0 (@] (@] e 0 (@] (@] 0 (@] 0
-t (s -~ - - - - [(s -~ - - - -t [- -~ (s (s -~ - -
- o = = o M = o = o o = o o N o = — N o = o o
O OO O A O N W L, 0 N A B O N O OGN BB 0O N W 41,07%
Dup Score mLOC Score mCC Score mArg Score Dup. Score mLoc Score m CC Score m Interf. Score

yonder

— R&D Metrics

supported

developer base + customer base

niche
weasulew

Very small

community / open soure

Small community Multiple
runtimes

Standard base Standard base

/ open soure

Custom
Languages

Tech locked on Runtime No No
required runtimes runtimes

mainframes

unsupported

yonder

Does these results match your expectations?

yonder

Impact

®logoipsum yonder

What is the impact of code debt is in your
portfolio?

yonder

— The impact of code debt

Table 2: Average number of Jira defects per file for each Code

Health category.
Healthy Warning Alert | All
Avg 0.25 0.94 3.70 | 0.35
Jira defects 75% 0.00 1.00 4.00 | 0.0
Std 0.90 2.58 6.61 | 1.43

Relative #Jira defects

1.00

0.80

0.60

0.40

0.20

15 times more
defects compared
to Healthy code

. —— —_— LY
Healthy Warning Alert
Code Health

yonder

https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://arxiv.org/abs/2203.04374

— The impact of code debt

Relative Time-in-Development

0.15

} 124% longer
0.10] i average
compared to
- Healthy code

Healthy Warning Alert

Code Health

Figure 8: Average Time-in-Development (scaled) for resolv-
ing a Jira issue per file. The standard errors are depicted as
vertical lines.

Average Maximum Time-in-Development

1.0[1_
|
0.80 J
0.60 9 times longer
] average
0.40 maximum time
—] compared to
0.20 Healthy code

Healthy Warning Alert

Code Health

Figure 9: Average maximum Time-in-Development (scaled)
for resolving a Jira issue per file. The standard errors are
shown as vertical lines.

yonder

https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://codescene.com/hubfs/web_docs/Business-impact-of-code-quality.pdf
https://arxiv.org/abs/2203.04374

Tracking planned vs. unplanned work?

yonder

— The impact of code debt

Date: 2020-12-01
12k
Planned: 1696 (54.67 %)
10.8k Unplanned: 1406 (45.33 %)
Total: 3102 Hours
9.6k
8.4k unplanned work
7.2k
planned work
Bk
4.8k
3.6k
2.4k
b I I I I I
A

2020 Apr Jul Oct 2021

= Planned
Unplanned

Figure 2. Trend showing the percentage of Unplanned Work over the past year.
On average, 40-50% of the development time is wasted on unplanned work.

husiness:costs-of-technical yonder

https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://arxiv.org/pdf/2401.13407v1

— The impact of code debt

Software development is rarely
ol sustainable. The average organization
wastes 23- 42% of their development time
‘ due to technical debit.

Business impact of technical . .
deli P Based on data, many organizations pay for

= 100 developers, but are only getting the
is paper presents an approach to
calculating, visualizing, and communicating output equivalent Of 75 deve'opers_

the costs of technical debt. As shown in this
paper, a typical development organization can
increase their feature delivery efficiency by at
least 25% by managing technical debt.

https://arxiv.org/pdf/2401.13407v1

yonder

https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://arxiv.org/pdf/2401.13407v1

— The impact of code debt

8 -
20000
7 -
18000 A
6 -
5
N 2 16000 -
o}
0 o
8 g
u-g 4 é') 14000 A
* £
3 £
Z 3- £ 12000
2
, | I
10000 A
1 E
\ 8000 - \
0 .
T T T T T 6000 - T T T T I
2 4 6 8 10 2 4 6 8 10
Code Health Code Health
Figure 2: Average defect count per file for different CH. Figure 3: Average Time-in-Dev for resolving issues.

https://arxiv.org/pdf/2401.13407v1

yonder

https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf

— Increasing, not diminishing returns

200 200
—@- current Code Health ~@- current Code Health

1501 150 A
S S
o 100+ o 100-
| &) |
C C
g g
£ 501 £ 501
o °
1) 1)
2 2
s 0 =0 8 0
[()
o o

—50 - —501

—-100 - - - - - —-100 - - - T T
2 4 6 8 10 2 4 6 8 10
Code Health Code Health
(a) Starting point: CHy = 3.9,u = 0.12 (b) Starting point: CHy = 3.9,u = 0.25

https://arxiv.org/pdf/2401.13407v1

yonder

https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf

— Increasing, not diminishing returns

200 200
current Code Health current Code Health

150 1 150 1

100 100

Relative difference (%)
(8]
o

Relative difference (%)
(¥,]
o

=501 =50 1

=100 ' T T T - -100 T . : ; .
2 4 6 8 10 2 4 6 8 10
Code Health Code Health

(c) Starting point: CH, = 6.0,u = 0.12 (d) Starting point: CH = 6.0, u = 0.25

https://arxiv.org/pdf/2401.13407v1

yonder

https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf

Relative difference (%)

Increasing, not diminishing returns

200

150 1

100 1

50 1

—-50 1

—-100

~@- current Code Health

p—

2 4 6 8 10
Code Health

(e) Starting point: CH) = 9.1,u = 0.12

https://arxiv.org/pdf/2401.13407v1

Relative difference (%)

200

150 1

100

ul
o

—50 1

—-100

/

@~ current Code Health

2

4

6 8 10
Code Health

(f) Starting point: CHy = 9.1,u = 0.25

yonder

https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf
https://codescene.com/hubfs/calculate-business-costs-of-technical-debt.pdf

Should we do, something about Technical Debt?

yonder

thank you

	Title
	Slide 1: R&D Metrics, Reloaded

	Agenda
	Slide 2: agenda

	Client logo
	Slide 3: Remus Pereni
	Slide 4: The impact of code and technical debt
	Slide 5: Introduction
	Slide 6: Technical Risk
	Slide 7: Technical Debt
	Slide 8: Technical Debt Quadrants
	Slide 9: Does your portfolio have a technical debt problem?
	Slide 10: Do we see a tech debt problem?
	Slide 11: Technical Debt Quadrants
	Slide 12: Technical Debt Quadrants
	Slide 13: What is your process to manage technical debt in your portfolio?
	Slide 14: Who measures technical debt?
	Slide 15: TSS Security Control Framework a.k.a. TSS SCF
	Slide 16: Measuring
	Slide 17: Measuring software quality
	Slide 18: ISO / IEC 25010:2011 Product Quality Model
	Slide 19: R&D Metrics
	Slide 20: How code debt looks like?
	Slide 21: Looking at a long running project
	Slide 22: Looking at a long running project
	Slide 23: Code debt – why is it important
	Slide 24: R&D Metrics
	Slide 25: R&D Metrics
	Slide 26: R&D Metrics
	Slide 27: R&D Metrics
	Slide 28: Does these results match your expectations?
	Slide 29: Impact
	Slide 30: What is the impact of code debt is in your portfolio?
	Slide 31: The impact of code debt
	Slide 32: The impact of code debt
	Slide 33: Tracking planned vs. unplanned work?
	Slide 34: The impact of code debt
	Slide 35: The impact of code debt
	Slide 36: The impact of code debt
	Slide 37: Increasing, not diminishing returns
	Slide 38: Increasing, not diminishing returns
	Slide 39: Increasing, not diminishing returns
	Slide 40: Should we do, something about Technical Debt?
	Slide 41

