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The impact of code and technical debt
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1 Introduction
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— Technical Risk

The potential for losses due to
failures or shortcomings in
technology systems, processes, or
implementations that can impact

project outcomes or business
objectives.

Is that different from Technical
Debt?

TECHNICAL RISK



— Technical Deb TECHNICAL DEBT

The accumulated costs and future liabilities
resulting from shortcuts or suboptimal
technical decisions made during the
software development process. It represents
the work that needs to be done before a
piece of software can be considered
complete or optimal.

Code debt
Architectural debt
Technology debt
Testing debt
Infrastructural debt
Know-how debt

Testing

Infrastructural
Debt

Know-How Debt Know-How D




— Technical Debt Quadrants

DELIBERATE
“We don’t have time for “We must ship now and deal
design” with the consequences”
RECKLESS PRUDENT

“ Now we know how we
should have done it”

ACCIDENTAL
yonder



Does your portfolio have a technical debt
problem?

yonder



®

— Do we see a tech debt problem?

Technical Debt

Roadmap

Processes

Technology

Appropriateness

Reliability

Architecture

equirements

Maintainability

Security

Compatibility

Portability

Avg of 144 products
seen in the past years
on M&A
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— Technical Debt Quadrants

IN CODE Debt Risks

New features

Improvements

Dependency upgrades

Rework / refactoring

Feature removal

Enhancement Performance optimization

Bug fixes

Scaling

Reliability

Documentation

CUSTOMER-FACING

Customer escalations

Operation

Incident response

Feature flag & runtime variable

On-call

Tool chain investments

Required migrations

Testing & QA

Security & compliance

Chaos engineering

HA/DR investments

Pen testing & vuln scans

IN PRODUCTION

Is there focus the risk mitigation? Which items?

Risk
management

BEHIND THE SCENES

Maintenance
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— Technical Debt Quadrants

Enhancement

CUSTOMER-FACING

Operation

IN CODE Debt Risks

R 4
~
\

Dependency upgrades

New features LS
&
Improvements

7
7 \
Feature removal / \

Performance optimization

Rework / refactoring

Tool chain investments

Bug fures >
Reliability 4 - ‘ Required migrations
Documentation

Testing & QA

Customer escalations

Security & compliance

BICIINIE response
Chaos engineering

Feature flag & runtime variable HA/DR investments

On-call Pen testing & vuln scans

IN PRODUCTION

Risk
management

BEHIND THE SCENES

Maintenance
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What is your process to manage technical debt
in your portfolio?
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— Who measures technical debt?

W
10%

none of the interviewed companies had a clear
strategy on how to track and address the
wasted time

Only 10% of business Developers waste 42%
managers actively of the work week on
manage technical debt. technical debt.

Besker, T., Martini, A., Bosch, J. (2019) “Software Developer Productivity Loss Due to Technical Debt”

Antonio Martini, Terese Besker, and Jan Bosch. 2018. Technical debt tracking: Current state of practice: A survey and
multiple case study in 15 large organizations. Science of Computer Programming 163 (2018), 42-61.
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— TSS Security Control Framework a.k.a. TSS SCF

In TSS the TSS SCF was introduced in 2022 and
covers areas that are related to security:

; ‘% - —r— - penetration tests,
i TSS Security Control Framework. - i ! ° data encry ptl on

T Duyoa e roryour cuswormers

B e e * security requirements (OWASP ASVS)
e —— - unsupported software

| | Impact is high, companies see vulnerable or
e unsupported third-party dependencies as
e . uncompliant and leads to pressure to change

e —— including in M&A.

fuland |
53 6.2 Areactions of priviledged users logged?
s

Until now MD had to sign that he acknowledges
T R the risks, and fines can be applied for not
addressing the issues.

8.0 Sa Awar 55 B
62 81 Doyou perform phishingtests for your employees periodically (minimal annually)?
82 he i for
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) Measuring
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— 1SO / IEC 25010:2011 Product Quality Model

Overall Rating:

—e—Your App —e—Max Possible

FunCtlonallty ey ety

omp leteness n Maturity Time behavior =4 Recogniz ability =1 Modularity =] Confidentiality Co-existence Adaptability
4 C lef ime behavi iz abil i dul ficl | d bil
3 Correctness =1 Availability Sgl‘tﬁ::ggi | Learnability =| Reusability - Integrity Interoperabilit: Installability
Portability Reliability
Approg;iatene = Fault Tolerance| Capacity ={ Emor handling ={ Analyzability ] rept‘gig:(ion Replaceability
L1 Recoverabiity = U-‘:é';t:{if;ce H  Modifiability - Authenticity
| Accessibility =1 Testability =4 Accountability
=] Operability

Compatibility Maintainability

Security
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— R&D Metrics

L 0N OV B W R

" Formula Bar ~

A B Cc E F
Classification: Confidential Filled in by:
Reference date:
Product name:
Product version Risk Score 3532
Technology | .Net
Total lines of code | 154208
R&D Metrics Survey
Question Answer Comments
10 Code debt Code Risk Score 232
1.1 Percentage of duplicated lines of code from the code base 4,5%
Total duplication risk: 0
1.2 Percentage of code in methods/functions/procedures with more than 15 lines of code 44,0%
1.3 Percentage of code in methods/functions/procedures with more than 30 lines of code 258%
1.4  Percentage of code in methods/functions/procedures with more than 60 lines of code 12,6%
Unit size risk score: 32
1.5 Percentage of code in methods/functions/procedures with cyclomatic complexity higher than 5 30,1%
1.6  Percentage of code in methods/functions/procedures with cyclomatic complexity higher than 10 18,7%
1.7  Percentage of code in methods/functions/procedures with cyclomatic complexity higher than 25 71%
Total complexity risk: 122
1.8 Percentage of code in methods/functions/procedures with more than 3 argumets 17,2%
1.9 Percentage of code in methods/functions/procedures with more than 5 argumets 6,7%
1.10 Percentage of code in methods/functions/procedures with more than 7 argumets 35%
Total method interfacing risk: 78
2.0 Technology debt | Technology Risk Score 3300
2.1 Number of dependencies that are unsuported A 22
2.2 Number of dependencies that have security vulnerabilities 11
2.2 Number of di | that have liant license 0
3.0 Testing quality
3.1 Number of lines of code changed in the last released version A 35287| This includes our entire project (.Net and JIS]
3.2 Number of bugs that have been reported and accepted as software bugs for the last release 0
3.3 Number of tickets that have been raised for the last release 0
Testing quality risk score 0
Testing Risk Score 0

Code Debt

T N
Duplication
+ % of duplicated lines of code from the
codebase should not exceed 4.8%
\. J
e N

% of code in methods /
functions / procedures with
morethan 15/ 30/ 60 lines of
code

% of codein methods /
functions / procedures with
cyclomatic complexity higher
than 5/ 10/ 25

% of codein methods /
functions / procedures with
morethan 3/5/ 7 arguments

Technology
Debt

|| Number of dependencies that

are unsupported

Number of dependencies that
have security vulnerabilities

| | Number of dependencies that

have uncompliant license

Testing Quality

Number of lines of code
changed in the lastreleased
version

Number of bugs that have
been reported and accepted
as software bugs for the last

release

Number of tickets that have
been raised for the last
release
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How code debt looks like?
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— Looking at a long running project

120.000

100.000

80.000

60.000

Lines of code

40.000

20.000

—e— Lines of code
—e—Code Risk

01.01.2015
12.777
108

Codebase evolution in time

01/13/2017
42.040
130

01.07.2019
53.996
161

01/14/2021
67.666
161

01.01.2024
100.648
168

180
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80

60

40

20

Code Risk Score
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Code debt - why is it important

Codebase evolution in time
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24 products measured

2 portfolios

None had zero risk

— R&D Metrics
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— R&D Metrics
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— R&D Metrics Cyclomatic complexity, high
number of decisions, the
biggest problem.
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— R&D Metrics

supported

developer base + customer base

niche
weasulew

Very small

community / open soure

Small community Multiple
runtimes

Standard base Standard base

/ open soure

Custom
Languages

Tech locked on Runtime No No
required runtimes runtimes

mainframes

unsupported
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Does these results match your expectations?
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Impact
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What is the impact of code debt is in your
portfolio?
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— The impact of code debt

Table 2: Average number of Jira defects per file for each Code

Health category.
Healthy Warning Alert | All
Avg 0.25 0.94 3.70 | 0.35
Jira defects 75% 0.00 1.00 4.00 | 0.0
Std 0.90 2.58 6.61 | 1.43

Relative #Jira defects

1.00

0.80

0.60

0.40

0.20

15 times more
defects compared
to Healthy code

. —— —_— LY
Healthy Warning Alert
Code Health
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— The impact of code debt

Relative Time-in-Development

0.15

} 124% longer
0.10] i average
compared to
- Healthy code

Healthy Warning Alert

Code Health

Figure 8: Average Time-in-Development (scaled) for resolv-
ing a Jira issue per file. The standard errors are depicted as
vertical lines.

Average Maximum Time-in-Development

1.0[1_
|
0.80 J
0.60 9 times longer
] average
0.40 maximum time
—] compared to
0.20 Healthy code

Healthy Warning Alert

Code Health

Figure 9: Average maximum Time-in-Development (scaled)
for resolving a Jira issue per file. The standard errors are
shown as vertical lines.
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Tracking planned vs. unplanned work?
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— The impact of code debt

Date: 2020-12-01
12k
Planned: 1696 (54.67 %)
10.8k Unplanned: 1406 (45.33 %)
Total: 3102 Hours
9.6k
8.4k unplanned work
7.2k
planned work
Bk
4.8k
3.6k
2.4k
b I I I I I
A

2020 Apr Jul Oct 2021

= Planned
Unplanned

Figure 2. Trend showing the percentage of Unplanned Work over the past year.
On average, 40-50% of the development time is wasted on unplanned work.

husiness:costs-of-technical yonder
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— The impact of code debt

Software development is rarely
ol sustainable. The average organization
wastes 23- 42% of their development time
‘ due to technical debit.

Business impact of technical . .
deli P Based on data, many organizations pay for

= 100 developers, but are only getting the
is paper presents an approach to
calculating, visualizing, and communicating output equivalent Of 75 deve'opers_

the costs of technical debt. As shown in this
paper, a typical development organization can
increase their feature delivery efficiency by at
least 25% by managing technical debt.

https://arxiv.org/pdf/2401.13407v1
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— The impact of code debt
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Figure 2: Average defect count per file for different CH. Figure 3: Average Time-in-Dev for resolving issues.
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— Increasing, not diminishing returns
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(a) Starting point: CHy = 3.9,u = 0.12 (b) Starting point: CHy = 3.9,u = 0.25
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— Increasing, not diminishing returns
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(c) Starting point: CH, = 6.0,u = 0.12 (d) Starting point: CH = 6.0, u = 0.25
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